AI导读:

DeepSeek发布新论文,提出名为mHC的架构,旨在提高人工智能系统的可扩展性并降低训练成本。该架构通过恢复恒等映射特性和基础设施优化来提升性能。

  DeepSeek近日发布论文,阐述了一种更为高效的人工智能开发方法。该论文由创始人梁文锋参与撰写,提出了名为“流形约束超连接”(mHC)的框架。作者称,该框架旨在提升可扩展性,同时降低训练先进人工智能系统的算力和能源需求。DeepSeek下一代旗舰系统R2预计将在2月份春节前后问世。

  DeepSeek提出mHC新架构

  1月1日消息,DeepSeek发布了一篇新论文,提出了一种名为mHC(流形约束超连接)的新架构

  该研究旨在解决传统超连接在大规模模型训练中的不稳定性问题,同时保持其显著的性能增益。

  这篇论文的第一作者有三位:Zhenda Xie(解振达)、Yixuan Wei(韦毅轩)、Huanqi Cao。值得注意的是,DeepSeek创始人梁文锋也在作者名单中。

  论文摘要指出,近来,以超连接(HC)为代表的研究通过拓宽残差流宽度和多样化连接模式,拓展了过去十年间确立的普遍采用的残差连接范式。虽然这些改进带来了显著的性能提升,但连接模式的多样化从根本上削弱了残差连接固有的恒等映射特性,导致严重的训练不稳定性与受限的可扩展性,同时还造成了显著的内存访问开销。

  为了解决这些问题,DeepSeek提出了流形约束超连接(mHC)——一种通用框架,能够将HC的残差连接空间投影到特定流形上,从而恢复恒等映射特性,并融合严格的基础设施优化以确保运行效率。

  DeepSeek称,实证实验表明,mHC能够有效支持大规模训练,在提供明显性能提升的同时具备更优的可扩展性。DeepSeek预计,mHC作为HC的一种灵活而实用的拓展,将有助于深化对拓扑架构设计的理解,并为基座模型的演进指明富有前景的方向。

  内部大规模训练结果显示,mHC可有效支持规模化训练,当扩展率=4时,仅带来6.7%的额外时间开销。

  图为残差连接范式的示意图。本图对比了 (a) 标准残差连接、(b) 超连接以及 (c) 流形约束超连接的结构设计。与无约束的HC不同,mHC通过将连接矩阵投影到一个约束流形上,专注于优化残差连接空间,从而确保训练的稳定性。

  论文在结论与展望部分指出,实证结果表明,mHC能有效恢复恒等映射特性,相较于传统HC,能以更优的可扩展性实现稳定的大规模训练。关键的是,通过高效的基础设施级优化,mHC以可忽略的计算开销实现了上述改进。

  论文还指出,作为HC范式的广义拓展,mHC为未来研究开辟了多个重要方向:虽然本研究采用双随机矩阵确保稳定性,但该框架可兼容针对特定学习目标设计的多种流形约束探索;预计对差异化几何约束的深入研究可能催生能更好权衡可塑性—稳定性关系的新方法。此外,DeepSeek希望mHC能重新激发学界对宏观架构设计的关注。通过深化对拓扑结构如何影响优化与表征学习的理解,mHC将有助于突破现有局限,并可能为下一代基础架构的演进指明新路径。